Robust optimization with simulated annealing

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust optimization with simulated annealing

Complex systems can be optimized to improve the performance with respect to desired functionalities. An optimized solution, however, can become suboptimal or even infeasible, when errors in implementation or input data are encountered. We report on a robust simulated annealing algorithm that does not require any knowledge of the problems structure. This is necessary in many engineering applicat...

متن کامل

portfolio optimization with simulated annealing algorithm

the markowitz issue of optimization can’t be solved by precise mathematical methods such as second order schematization, when real world condition and limitations are considered. on the other hand, most managers prefer to manage a small portfolio of available assets in place of a huge portfolio. it can be analogized to cardinal constrains, that is, constrains related to minimum and maximum curr...

متن کامل

Optimization by simulated annealing.

There is a deep and useful connection between statistical mechanics (the behavior of systems with many degrees of freedom in thermal equilibrium at a finite temperature) and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters). A detailed analogy with annealing in solids provides a framework for optimization of the properties of very ...

متن کامل

A new Simulated Annealing algorithm for the robust coloring problem

The Robust Coloring Problem (RCP) is a generalization of the well-known Graph Coloring Problem where we seek for a solution that remains valid when extra edges are added. The RCP is used in scheduling of events with possible last-minute changes and study frequency assignments of the electromagnetic spectrum. This problem has been proved as NP-hard and in instances larger than 30 vertices, meta-...

متن کامل

Simulated Annealing and Global Optimization

Nelder-Mead (when you don’t know ∇f ) and steepest descent/conjugate gradient (when you do). Both of these methods are based on attempting to generate a sequence of positions xk with monotonically decreasing f(xk) in the hopes that the xk → x∗, the global minimum for f . If f is a convex function (this happens surprisingly often), and has only one local minimum, these methods are exactly the ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Global Optimization

سال: 2009

ISSN: 0925-5001,1573-2916

DOI: 10.1007/s10898-009-9496-x